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Laminar burning velocities SL can be obtained from the pressure history in a constant volume combustion
experiment. In the analysis of results, the relation between pressure and mass fraction burnt, x(p), is
crucial. The linear x(p) relation by Lewis and Von Elbe is still widely used. Yet, from their original work
a more accurate relation for x(p) can be derived, as is demonstrated in this paper (“extended LvE”). In
this work we introduce a two zone model that can be treated analytically, resulting in an x(p)-relation
identical to “extended LvE”. We then extend our analytical approach to a multi-zone model, which is
used to benchmark several other analytical x(p) relations. Results of the two-zone model are very close
to the multi-zone results. Reported deviations between SL from bomb data and from other methods
may be attributed to the limited accuracy of the linear x(p) relation, as is illustrated for stoichiometric
methane–air combustion. Notably, for small x our new relation gives a factor of γb/γu difference in SL as
compared to the linear one, which has long been assumed to be correct for small x. Our new x(p) result
also leads to a new expression for the explosion constant KG in the cubic root law.

© 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Deflagration of a combustible mixture in a confined volume
is one of the “classical” combustion experiments, with a history
of more than a century [2]. In such a ‘combustion bomb’ experi-
ment, the burning velocity SL is obtained from the pressure trace
p(t), sometimes combined with a measurement of the flame front
velocity. The relation between the pressure trace and the lami-
nar burning velocity can be expressed as an ordinary differential
equation for the pressure, containing SL as a parameter. Fitting the
solution to an experimental pressure trace provides values of S L . In
its general form, the differential equation contains the mass frac-
tion burnt, denoted as x. To solve it, the functional dependence
x(p) must be known, obviating the importance of accurate x(p)

relations in obtaining accurate burning velocities.
In the following section, the extensive literature on this subject

is reviewed. It appears that a linear x(p) relation is still widely
used, in spite of its recognized limited accuracy. Yet, the compu-
tational simplicity of using an analytical x(p) expression remains
appealing. This has led us to the present work, the core of which
lies in Section 3. After a short resume of the differential equation
for the pressure, analytical x(p) relations are discussed. This in-
cludes the work of Lewis and Von Elbe, several other published
models, and the two- and multi-zone models of the present work.

* Corresponding author. Tel.: +31 40 2475347; fax: +31 40 2433445.
E-mail address: c.c.m.luijten@tue.nl (C.C.M. Luijten).
1290-0729/$ – see front matter © 2009 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2008.12.020
In Section 4 the impact of the choice of x(p) relation on burn-
ing velocity values is discussed. Finally, the impact of our new
x(p) expression on the explosion constant KG in the so-called Cu-
bic Root Law is addressed. Conclusions and recommendations are
summarized in Section 5.

2. Literature review

Lewis and Von Elbe (further denoted, for brevity, as LvE) de-
scribed the essential physics of a spherically propagating flame in
a confined vessel [3]. A linear x(p) relation, first introduced in their
famous text book [1], is still used a lot in evaluating laminar burn-
ing velocities [4–9].

Around 1960, much work on constant volume combustion was
done by the South-African group around C.J. Rallis [10–12]. In a
later review [13], Rallis and Garforth argue that the constant vol-
ume method by that time (1980) is the most reliable method of
measuring burning velocities.

In the mid-seventies, the USA National Bureau of Mines pub-
lished some often cited papers on combustion bomb research [14–
17]. Just as the South-African group, their work concentrates on
evaluating the burnt gas temperature Tb .

In 1976, Bradley and Mitcheson (abbreviated further as B&M)
published a review paper in which they compare the linear x(p)

approximation to the results of a numerical multi-zone model [18].
Their numerical results appear to be quite close (but not identi-
cal) to the linear relation. In contrast, B&M cite Perlee et al. [16],
who estimated the burnt density from a uniform isentropic com-
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Nomenclature

Ab surface area of burnt zone . . . . . . . . . . . . . . . . . . . . . . . . m2

c specific heat capacity . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

C molar heat capacity . . . . . . . . . . . . . . . . . . . . . . J mol−1 K−1

e specific internal energy . . . . . . . . . . . . . . . . . . . . . . . . . J kg−1

E total internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
f function defined in Eq. (20)
K heat of reaction according to definition

Ref. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J mol−1

KG explosion constant . . . . . . . . . . . . . . . . . . . . . . . . . . bar m s−1

m mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
M molar mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg mol−1

n number of moles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mol
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bar
r f radius of flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R0 universal gas constant . . . . . . . . . . . . . . . . . . . . J mol−1 K−1

R specific gas constant . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

Rv effective vessel radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
SL laminar burning velocity . . . . . . . . . . . . . . . . . . . . . . . m s−1

s entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T mass-averaged temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

v specific volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3 kg−1

x mass fraction burnt
Y F mass fraction of fuel

Greek symbols

�e isochoric heat of combustion per kg mixture . . J kg−1

�hF enthalpy of combustion per kg fuel . . . . . . . . . . . . J kg−1

�p pressure difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bar
�uF isochoric heat of combustion per kg fuel . . . . . . J kg−1

γ specific heat ratio
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

ξ ratio of moles after/before reaction

Subscripts

0 reference state (1 atmosphere, 298.15 K)
b pertaining to burnt mixture
e final (end) condition
f pertaining to flame
i initial condition
j pertaining to jth zone
L laminar
n pertaining to nth time step
p at constant pressure
u pertaining to unburnt mixture
v at constant volume

Superscripts

( j) pertaining to jth time step
(n) pertaining to nth time step
pression of the burnt gases, leading to x(p) results differing sig-
nificantly from their extended numerical model. This observation
makes B&M state that “procedures based on an ‘a priori’ assump-
tion of this linear equation are preferable to those based on as-
sumptions on the value of ρb”. As we will demonstrate in this
work, the model of Perlee et al. [16] actually violates energy con-
servation. Therefore B&M favor the linear expression possibly for
the wrong reasons.

In 1980 Metghalchi and Keck first published their two-zone
model, in which the equations for conservation of mass and energy
are simultaneously solved [19]. Both the unburnt and burnt mix-
tures are treated as spatially uniform in pressure, temperature and
composition. In their 1982 paper [20], an extensive list of possibly
disturbing effects on the analysis is quantitatively discussed: wall
heat transfer, burnt gas temperature gradient, buoyant rise of the
flame, charge stratification, wrinkling of the flame, spark energy
input, and radiative heat loss. All these effects are concluded to
be of limited significance (generally smaller than 1%). This conclu-
sion underlines the relevance of simple analytical models. In later
papers, the two-zone model is further employed [20–22], contin-
uing to date with state-of-the-art experiments in a micro-gravity
environment, ruling out disturbances due to buoyancy [23,24].

In a later paper from Metghalchi’s group, Elia et al. [22] extend
the two-zone model to include multiple zones. In this way, the
temperature gradient in the burnt gas is taken into account. Re-
cently, Saeed and Stone [25] also published a multi-zone model.
They compare the resulting evolution of pressure versus mass
fraction burnt with the linear approximation. For a stoichiomet-
ric methane–air mixture, the multi-zone x(p) curve is found to lie
slightly below the linear one. This result will be readdressed in
Section 4.

Recently, Farrell et al. [26] used a two-zone model to obtain
laminar burning velocities of 45 hydrocarbons. Stone et al. [24]
compare a two-zone model with the linear x(p) model and con-
clude that the observed difference was always smaller than 1.6%
for the conditions evaluated. This leads them to advocate the lin-
ear relation, with the additional argument that “many authors have
suggested improvements to this method, but there is rarely any
theoretical justification for the complexities that are introduced”.
Exactly this theoretical justification will be provided in the present
paper.

Obviously, analytical approaches have some clear advantages, as
witnessed by the extensive use of the linear relation in recent liter-
ature. Avoiding computational effort is one of them; giving better
insight is another. Of course, within the class of analytical mod-
els one should strive for the highest possible accuracy. We will
demonstrate that the accuracy of obtained burning velocity values
can be increased with respect to the linear approximation. This
comes at the expense of only a marginal increase in complexity.

3. Combustion bomb theory

In this section first the differential equation relating the pres-
sure trace to burning velocity is presented in its general form,
containing x(p) and its derivative. The second part of this section
deals with the analytical varieties of x(p). The same x(p) relation
is shown to follow from an analytical treatment of the two-zone
model, as well as from closer inspection of the multi-zone model
of Lewis and Von Elbe. Next, the analytical zone model is extended
to multiple zones. In addition, some alternative approaches from
literature are discussed within the present context.

3.1. Assumptions and basic relations

The following assumptions are very often made in the analy-
sis of constant volume combustion: (1) the uniform unburnt gas
is initially at rest; (2) the pressure remains spatially uniform dur-
ing combustion; (3) total mass and volume of the vessel contents
are conserved; (4) external heat input, heat losses and buoyancy
are negligible; (5) the flame front is spherical and infinitely thin;
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(6) the effect of flame stretch is negligible; (7) the unburnt gas is
compressed isentropically; (8) there is no heat transfer between
the zones.

Starting from the above assumptions, a differential equation for
the pressure can be derived. The derivation is presented in Ap-
pendix A, and the result – which is for instance found already in
Ref. [10] – is

dp

dt
= 3

Rv

(
dx

dp

)−1[
1 −

(
pi

p

)1/γu

(1 − x)

]2/3( p

pi

)1/γu

SL . (1)

In this equation, Rv is the effective radius of the vessel and γu =
cpu/cvu , the isentropic exponent of the unburnt mixture. Both x
and its derivative dx/dp depend on pressure.

Besides the above assumptions, a few model-specific ones are
often made. In zone-based models, the change of specific heats
with temperature is often taken into account, just as the shift-
ing chemical equilibrium with temperature. However, inclusion of
these phenomena requires numerical methods. Therefore in our
two- and multi-zone models in Sections 3.2.2 and 3.2.3, we assume
that both burnt and unburnt mixtures are perfect gases (ideal
gases with constant specific heats over the temperature ranges
of interest) with constant composition. The quantitative impact of
this assumption is discussed in a separate paper [27], in which we
compare our analytical two-zone model to several numerical mod-
els.

3.2. Pressure versus mass fraction burnt

3.2.1. Lewis and Von Elbe
The most cited x(p) relation in literature equates the burnt

mass fraction to the fractional pressure rise:

x = p − pi

pe − pi
. (2)

Although some authors cite Ref. [3] as the original source, actually
it is not. Ref. [3] provides a different relation, which in the current
symbols reads

x = 1 − R0Ti(pe/pi − p/pi)

R0Tu(γb − γu)/(γu − 1) + (γb − 1)K
. (3)

R0 is the universal gas constant. The parameter K is related to the
molar reaction enthalpy, expressed in current symbols as

K = ξC pb Tb − C pu Tu, (4)

where ξ is the ratio of burnt to unburnt numbers of molecules.
The burnt temperature Tb differs for consecutively burning annular
shells; the original LvE model is essentially a multi-zone one.

Later in their book [1], they present a lengthy derivation to
prove Eq. (3). In a final simplifying step in Ref. [1], which comes
down to assuming that Tu = Ti in the denominator of Eq. (3) irre-
spective of x, the linear relation (2) is obtained.

Although the parameter K has no straightforward interpreta-
tion in the present context, LvE show that it can be obtained in
two ways, giving the same result in very good approximation. The
first is computation from Eq. (4); the other is using Eq. (3) and
considering the limiting case for x = 0, p = pi . Rearranging (3) for
p = pi (where Tu = Ti ) gives

K = R0Ti

γb − 1

(
pe

pi
− γb − 1

γu − 1

)
. (5)

However, what LvE did not notice, is that insertion of Eq. (5)
into Eq. (3) directly yields an x(p) relation without further approx-
imations. The result is
x =
p − pi

[( γb−1
γu−1

) + Tu
Ti

( γu−γb
γu−1

)]
pe − pi

[( γb−1
γu−1

) + Tu
Ti

( γu−γb
γu−1

)] , (6)

which has never been published as far as the current authors are
aware of.

The linear relation (2) is equivalent to Eq. (3) when γu = γb .
As a consequence, the linear approximation may be in error when
γu and γb differ – which is always the case, due to differences
in both composition and temperature. Nevertheless, because of its
appealing simplicity and reasonable accuracy, the linear relation
has been used a lot for obtaining laminar burning velocities.

Dahoe et al. [5] give a derivation similar to the above, but im-
mediately start from the linear relation (2). Eq. (1) then turns into

dp

dt
= 3(pe − pi)

Rv

[
1 −

(
pi

p

)1/γ pe − p

pe − pi

]2/3( p

pi

)1/γ

SL (7)

which is attributed by Bradley and Mitcheson [18] to Benson and
Burgoyne [28]. In the same paper [5] a three-zone model is pre-
sented, which takes into account the finite thickness of the flame.
Later, Dahoe and De Goey present an improvement to the three-
zone model [4], however its derivation still postulates a linear x(p)

relation.
Senecal and Beaulieu [6] use the same model as Dahoe et al.

in order to obtain new values for the explosion constant KG (see
Section 4.3) for several gases. In recent years, also Skjold et al. [7],
Frijters et al. [8] and again Dahoe [9] have employed the linear
relation (2) to derive burning velocities.

3.2.2. Analytical two-zone model
In a two-zone model, both the burnt and unburnt zones have

uniform temperatures and compositions. Conservation of specific
volume v and internal energy e is expressed by

vt = xvb + (1 − x)vu, (8)

et = xeb + (1 − x)eu, (9)

where the subscript t denotes ‘total’, hence vt = V /mi and et =
E/mi where E is the total internal energy. For ideal gases Eq. (8)
can be written as

Ru Ti

pi
= x

Rb Tb

p
+ (1 − x)

Ru Tu

p
. (10)

The internal energy for a perfect gas can be written as e = e0 +
cv(T − T0), where e0 is the chemical energy stored in the mixture
at a reference temperature T0. Without loss of generality we can
write

eu(Tu) = cvu(Tu − T0) + �e, (11)

eb(Tb) = cvb(Tb − T0), (12)

where �e = e0,u −e0,b . Inserting Eqs. (11) and (12) into Eq. (9) and
rearranging gives

Tb = T0 + 1

xcvb

[
x�e + cvu(Ti − T0) − (1 − x)cvu(Tu − T0)

]
. (13)

Now Tb can be eliminated from Eq. (10) resulting in

p

pi
= (1 − x)

Tu

Ti
+ Rb

Ru

(
x

T0

Ti
+ 1

cvb Ti

[
x�e

+ cvu(Ti − T0) − (1 − x)cvu(Tu − T0)
])

. (14)

For the limiting case x = 1 at p = pe , we have

pe

p
= Rb

R

(
T0

T
+ 1

c T

[
�e + cvu(Ti − T0)

])
. (15)
i u i vb i
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Inserting this expression for pe back into Eq. (14) gives

p

pi
= (1 − x)

Tu

Ti
+ x

pe

pi
+ (1 − x)

[
Rb

Ru

cvu

cvb

Ti − Tu

Ti

]
. (16)

The term in square brackets can be rewritten as

Rb

Ru

cvu

cvb

Ti − Tu

Ti
= γb − 1

γu − 1

(
1 − Tu

Ti

)
. (17)

Inserting into Eq. (16) and rearranging for x we obtain

x =
p − pi

[( γb−1
γu−1

) + Tu
Ti

( γu−γb
γu−1

)]
pe − pi

[( γb−1
γu−1

) + Tu
Ti

( γu−γb
γu−1

)] . (18)

Eq. (18) is identical to Eq. (6). This is remarkable, since the latter
was derived from a multi-zone approach, whereas Eq. (18) follows
from a two-zone model with uniform Tb .

As a final step, the above result is written fully in terms of
pressure using Eq. (A.6). For later use, the result is given in a more
concise form:

x = p − pi f (p)

pe − pi f (p)
, (19)

where

f (p) =
(

γb − 1

γu − 1

)
+

(
γu − γb

γu − 1

)(
p

pi

)(γu−1)/γu

. (20)

Differentiation is straightforward, yielding

dx

dp
= 1 − pi f ′(p)

pe − pi f (p)
+ pi f ′(p)[p − pi f (p)]

[pe − pi f (p)]2
, (21)

where

pi f ′(p) =
(

γu − γb

γu

)(
p

pi

)−1/γu

. (22)

Both x and (dx/dp) can be inserted into the differential equa-
tion (1), resulting in a lengthy but analytical expression that is
easily evaluated with the help of a computer, without the need
for numerical solution. The end result is not written explicitly here
for reasons of space.

3.2.3. Analytical multi-zone model
The above methodology can be extended to multiple zones.

A “zone” in this context means a portion of the gas that burns
during the pressure rise from pi + ( j − 1)�p to pi + j�p, where j
runs from 1 to n and �p = (pe − pi)/n. As shown by Elia et al. [22],
the governing equations in a multi-zone approach are:

vt =
n−1∑
j=1

x j vbj + xn vbn +
[

1 −
n−1∑
j=1

x j − xn

]
vu, (23)

et =
n−1∑
j=1

x jebj + xnebn +
[

1 −
n−1∑
j=1

x j − xn

]
eu . (24)

We have neglected heat loss by conduction to the bomb wall,
which is included by Elia et al. Furthermore, we let the labeling
of shells arbitrarily start at j = 1 (instead of 0), which seems more
intuitive. Shells are burning consecutively; at any time step, a shell
with index n is just burning, whereas shells with lower indices
have already burnt in previous steps. For this reason, the terms
containing xn are taken out of the summation in Eqs. (23) and
(24). The total burnt fraction after time step n is given by

x =
n∑

j=1

x j . (25)
The shells, represented by the summations, are assumed to heat up
due to isentropic compression once they have burnt. Hence, their
temperature Tbj at the time the nth shell is burning, is given by:

T (n)

bj = T ( j)
bj

(
p(n)

p( j)

)(γb−1)/γb

( j < n), (26)

where T ( j)
bj ≡ Tbj is the temperature that shell j attained during

combustion. Since the temperatures of and mass fractions con-
tained in previously burnt shells are kept track of in this way, only
the incremental mass fraction and burnt temperature of the nth
shell need to be computed for each time step. These follow analyt-
ically from relations (23) and (24), as we will demonstrate.

Reusing Eqs. (11) and (12), conservation of energy reads

cvu(Ti − T0) + �e

=
n−1∑
j=1

x jcvb
(
T (n)

bj − T0
) + xncvb(Tbn − T0)

+
[

1 −
n−1∑
j=1

x j − xn

](
cvu(Tu − T0) + �e

)
. (27)

This can be rearranged for Tbn , resulting in

Tbn = T0 + 1

xncvb

{
cvu(Ti − T0) + �e −

n−1∑
j=1

x jcvb
(
T (n)

bj − T0
)

−
[

1 −
n−1∑
j=1

x j − xn

](
cvu(Tu − T0) + �e

)}
. (28)

The law of volume conservation (23) can for ideal gases be written
as

p

pi
=

[
1 −

n−1∑
j=1

x j − xn

]
Tu

Ti
+

n−1∑
j=1

x j
Rb

Ru

T (n)

bj

T i
+ xn

Rb

Ru

Tbn

Ti
. (29)

The values of x j and Tbj belonging to previously burnt shells are
known. Tbn is substituted from Eq. (28), resulting in an equation
linear in xn . Solving for xn we obtain

xn =
[

Rb

Ru

T0

Ti
− Tu

Ti
+ Rb

Ru

eu(Tu)

Ticvb

]−1

×
{

p

pi
−

(
1 −

n−1∑
j=1

x j

)
Tu

Ti
−

n−1∑
j=1

x j
Rb

Ru

T (n)

bj

T i

− Rb

Ru

1

Ticvb

[
eu(Ti) −

n−1∑
j=1

x jeb
(
T (n)

bj

)

−
(

1 −
n−1∑
j=1

x j

)
eu(Tu)

]}
, (30)

where eu and eb are defined by (11) and (12), the ratio Tu/Ti is
obtained from (A.6), and the burnt temperatures T (n)

bj follow from
(26). In principle, by substitution of these expressions, the result
for xn (and hence for x) could be written explicitly in pressure. In
view of the complexity of the result, however, this does not bring
any added value to the argument.

3.2.4. The South-African ‘school’
Based on the same assumptions mentioned in Section 3.1,

O’Donovan and Rallis [10] present an x(p) relation that in the
present symbols reads
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x = p − pi(Tu/Ti)

pe(Tb/Te) − pi(Tu/Ti)

= Te

Tb

{
p − pi(p/pi)

(γu−1)/γu

pe − (Te/Tb)pi(p/pi)
(γu−1)/γu

}
. (31)

Tb is the mass averaged burnt temperature during combustion,
with end value Te . Tb is determined for every burnt shell from 3
consecutive increases. First its unburnt temperature is determined
from adiabatic compression. Its burnt temperature is then obtained
from energy conservation for the shell at constant pressure. Finally,
the burnt shell is further compressed (and heated) adiabatically.
There is one important difference with the multi-zone approach:
the energy conservation law is not solved for the system as a
whole, but for each individual shell, assuming constant pressure
during combustion.

As a further simplification to their model, O’Donovan and Rallis
assume that Te and Tb are equal during the whole combustion
period. In this case one finds

x = p − pi(p/pi)
(γu−1)/γu

pe − pi(p/pi)
(γu−1)/γu

. (32)

This expression is equivalent to our equation (18) if γb = 1. This is
compatible with the assumption that the (mass averaged) burnt
temperature does not vary over time in this model. O’Donovan
and Rallis agree that this is a severe simplification, and suggest
to measure the burnt temperature at the center of the bomb Tb,c
immediately after the start of combustion to evaluated Te/Tb . In
their later review paper [13] this method is still promoted.

3.2.5. USA Bureau of Mines ‘school’
Nagy et al. [14] assume isentropic compression of the burnt

mixture as well, expressed by

Tb = Te

(
p

pe

)(γb−1)/γb

. (33)

As shown by Bradley and Mitcheson, Nagy et al. arrive at the fol-
lowing differential equation for the pressure:

dp

dt
= 3γ SL p

R
· p2/3γ

e

p1/γ
i

(
p1/γ

e − p1/γ
i

)1/3[
1 − (pi/p)1/γ

]
. (34)

The underlying x(p) expression is not given explicitly by the au-
thors. However, it is derived in Appendix B, as Eq. (B.6) in order to
show (later in Section 4) why this model does not give satisfactory
results.

Inserting Eq. (B.6) with γu = γb = γ into Eq. (1) yields Eq. (34).
However, in the calculations presented in the next section we
have used different values for γu and γb . Notice that Eq. (B.6) ap-
proaches the linear LvE result when both γ values approach unity.

4. Results and discussion

4.1. Comparison of x(p) relations

We start with a comparison of the various analytical x(p) re-
lations, namely: the linear relation (2); the analytical two-zone
result (19); Eq. (B.6), first used implicitly in Ref. [14] and further
denoted as “Nagy”; and the analytical multi-zone expression (25),
with x j ’s from Eq. (30). Since Eq. (19) is identical to Eq. (3),
the latter is not separately considered. Another variant relation is
Eq. (32). Since it follows as a limiting case for γb = 1 from Eq. (19),
this relation is not used in the comparison.

As an example we will use stoichiometric combustion of
methane with air throughout this section. In this example case,
the effect of flame stretch is expected to be very small. The pres-
sure rise is related to the mass consumption speed rather than
the burning velocity [29]. The mass consumption speed is ef-
fected by stretch and preferential diffusion through the modified
Markstein number, which is proportional to (Le − 1) according to
M∗ ∝ Ze(Le − 1)/2, Ze being the Zeldovich number [30]. As the
Lewis number of methane is very close to unity, this effect is neg-
ligible in the case of methane. Rahim et al. [31] also argue that
flame stretch is unimportant for methane–air flames.

The evaluation needs the following parameters:

• Initial and final pressures pi and pe;
• specific heats cvu , cvb;
• specific gas constants Ru , Rb (equivalently, molar masses Mu

and Mb);
• isentropic coefficients γu and γb (these follow from the

above);
• isochoric heat of combustion per unit of mass, �e = Y F �uF .

The initial pressure is taken 1 bar, the initial temperature Ti is
298 K. In accordance with the perfect gas assumption constant
specific heats are used, evaluated from the Burcat Tables [32]. For
the unburnt mixture, cp and cv are evaluated at Ti (since Tu in-
creases from about 300 to about 500 K, the associated error is
small), giving cpu = 1078 J kg−1 K−1 and cvu = 777 J kg−1 K−1. The
burnt properties are evaluated at the mass-averaged end tempera-
ture Te , which is obtained by iterating the relation

Te = T0 + cvu(Ti − T0) + �e

cvb(Te)
(35)

several times. In about 4 iterations, Te converges within 1 to
2526 K. The molar masses are obtained from the reaction equation
of methane with air, assuming complete combustion. The specific
heat ratios have values γu = 1.39 and γb = 1.24, with burnt spe-
cific heats cpb = 1539 J kg−1 K−1 and cvb = 1238 J kg−1 K−1. Know-
ing the mass-averaged end temperature and molar mass, the end
pressure pe following from the ideal gas law is 8.47 bar. In the
multi-zone computations 20 zones are used.

Y F is the mass fraction of fuel in the mixture. The heat of reac-
tion for the mixture �e is based on the isochoric heat of reaction
of the fuel �uF . The isochoric and isobaric heating values are re-
lated via

Y F �uF = Y F �hF − R0T0

[
1

Mb
− 1

Mu

]
, (36)

where �hF is the enthalpy of combustion and T0 the thermo-
chemical reference temperature. It is readily shown that the last
term is negligible: in our example case it vanishes since Mb equals
Mu for methane combustion.

Fig. 1 shows results of the different models. To facilitate com-
parison, a dimensionless pressure pr = (p − pi)/(pe − pi) is in-
troduced, and subtracted from x to emphasize mutual differences.
An important conclusion from this figure is that the two-zone and
multi-zone models cannot be distinguished. This suggests that in-
clusion of the temperature gradient in the burnt mixture is less
essential than might be expected based on its appreciable value
(from our multi-zone computations discussed in Section 3.2.3 we
find a temperature difference of about 800 K near the end of com-
bustion [33], a value reported by others as well. This high range
is a consequence of neglecting dissociation in the burnt gas. For
a broader discussion, see Ref. [27]). Indeed, the position of the
“zone-based” lines is found to be quantitatively the same as re-
ported by Saeed and Stone [25] – a few percent below the linear
model around x = 0.5 (see their Fig. 10, based on identical con-
ditions). These authors employ a multi-zone model in which both
the burnt temperature gradient and shifting chemical equilibrium
are taken into account. This confirms that the latter two effects
seem to affect x(p) less than might be expected.
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Fig. 1. Burnt mass fraction x as a function of relative pressure rise during stoichio-
metric combustion of methane with air, starting at pi = 1 bar and Ti = 298 K. The
linear model is subtracted to emphasize differences.

In contrast to the zone-based x(p) curves, the Nagy result is
above the linear result, and quantitatively deviates more. This ob-
servation was already made by Bradley and Mitcheson [18], com-
paring one of the relations of Perlee et al. [16] with the linear
relation and their numerical multi-zone model.

In the remainder of this paper we will use the multi-zone
model as a reference, because it captures most of the physics of the
problem. The gradient in burnt temperature is covered, and conser-
vation of energy is correctly solved for the system as a whole, in
contrast to the local approximations applied in other models [1,
14]. This raises the question whether the other models would vi-
olate global conservation of energy. To answer this, the energy of
the system is computed for each model. This requires knowledge
of the (unburnt and) burnt temperatures. In the two-zone model
Tb is solved directly. For the analytical multi-zone model the tem-
perature distribution during combustion is kept track of. For the
Nagy model, the burnt temperature follows from Eq. (33). Only for
the Lewis and Von Elbe model, obtaining Tb is not straightforward.
We shortcut this point by looking only at the mass-averaged burnt
temperature Tb . A general expression for Tb can be obtained (de-
rived in Appendix C):

Tb = Ti
Mb

Mu

p

pi

1

x

[
1 − (1 − x)

(
pi

p

)1/γu ]
. (37)

Fig. 2 shows results of this relation for each model.
The internal energy of the system now follows using Eqs. (11)

and (12). The results are also plotted in Fig. 2. By construction, the
two-zone and multi-zone models obey conservation of energy. The
small dip in the multi-zone curve near the end is an artifact of
our labeling of zones, and can be made arbitrarily small by taking
more zones (which does not really affect computation times since
all relations are algebraic). The Nagy result is off by about 5% at
maximum for these conditions. The linear relation is also off, albeit
less (about 1.5%). Thus, these models both violate conservation of
energy.

To interpret this result, it is good to realize that most local
approximations of Tb were based on combustion at constant pres-
sure. Locally over the flame front, energy conservation is solved
at constant pressure. Hence, isobaric specific heat is used to ob-
tain Tb . However, in the limit of only very few shells (especially in
the limiting case of only one burning shell), the end temperature
Fig. 2. Mass-averaged burnt temperature (lower curves) and total internal energy
(upper curves) as a function of mass fraction burnt, same conditions as Fig. 1.

should obviously be based on the isochoric specific heat of the sys-
tem. This contradiction apparently introduces an error in the local
models for Tb , the magnitude of which depends on the number
of zones taken into account. This can only be circumvented by the
use of an integral formulation of energy conservation, as is done
in the zone models.

This result can also be interpreted in terms of entropy. At in-
termediate stages of combustion, entropy increases more for the
two-zone model than for the others, implying that the two-zone
model carries the highest “degree of irreversibility” during the pro-
cess. The two-step pathway as described in Appendix B apparently
leads to erroneous results: forcing the burnt entropy to be constant
artificially decreases the energy content of the system, according to
the Second Law of Thermodynamics T ds � du.

We conclude this subsection with an important comment on
end pressures. We have taken pe equal to 8.47 bar for all models,
based on the assumptions of constant heat capacity and compo-
sition of the burnt mixture. The validity of these might be ques-
tioned. At higher temperatures some dissociation will occur, bring-
ing about a change in heat capacity (which is in addition tem-
perature dependent). We have compared our analytical two-zone
model for the example case to an in-house numerical two-zone
model, taking into account equilibrium chemistry and tempera-
ture dependent specific heats. Fig. 3 shows the results, plotted in
the same fashion as Fig. 1. The main characteristics of the curves
are similar, i.e. the largest deviation occurring at a relative pres-
sure rise near 0.4, its value being close to 0.015. Apparently, the
combined effect of dissociation and temperature dependent heat
capacity is quite modest.

4.2. Laminar burning velocity

The most important consequence of the previous section lies in
the determination of laminar burning velocities. Since the burn-
ing velocity is obtained by fitting experimental results to Eq. (1),
we start with plotting results of that equation for a typical case,
see Fig. 4. This solution is obtained using a standard Matlab solver
routine (ode23). For this example we took the burning velocity
SL constant and equal to 0.4 m s−1 (approximately equal to the
reported value for stoichiometric methane–air at atmospheric con-
ditions).

The pressure in the two-zone model starts to rise earlier than
in the other models. This can be understood from Eqs. (1) and
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Fig. 3. Deviation of x(p) from the linear relation for analytical and numerical mod-
els, same conditions as Fig. 1.

Fig. 4. Pressure as a function of time for stoichiometric combustion of methane–air,
same conditions as Fig. 1. SL is taken equal to 0.4 m s−1.

(38): since for small x the derivative dx/dp contains a factor γb/γu

(= 0.89 for the present case) with respect to the linear model,
the time derivative of pressure is larger for the two-zone model
by a factor 1/0.89 = 1.12. This result is confirmed by Bradley and
Mitcheson [18].

Consequently, since burning velocity is obtained by ‘scaling’ the
theoretical p(t) curve to the experimental one, the linear model
will give higher values of burning velocity for small x than the
two-zone model. Although many authors have claimed that the
linear relation would be correct for small x, actually it is not, as
can already be seen from Fig. 1, where the slope of the zone-based
curves deviates from unity already for small x. The error can be
quantified using Eq. (22). The derivative for x → 0 equals(

dx

dp

)
p=pi

= (γb/γu)

pe − pi
, (38)

which for γb �= γu differs from the linear result by a factor (γb/γu).
The impact of using different x(p) relations on laminar burning

velocity over the full pressure range can be quantified as follows.
Rearranging Eq. (1) gives
Fig. 5. Relative error of right-hand side of Eq. (39) with respect to the multi-zone
results, same conditions as Fig. 1.

SL

Rv(dp/dt)
= 1

3

(
dx

dp

)[
1 −

(
pi

p

)1/γu

(1 − x)

]−2/3( p

pi

)−1/γu

,

(39)

in which only the right-hand side depends on the x(p) model used.
Fig. 5 shows for each model the relative difference in the right-
hand side of Eq. (39) with respect to the multi-zone model. Since
the latter is believed to be the most accurate, this difference is
named “error” in Fig. 5. This representation clearly shows that the
obtained burning velocities SL(p, T ), obtained from a certain pres-
sure trace, significantly depend on the applied x(p) model.

Again, the two-zone model is very close (within 1% for the
present case) to the multi-zone results. This seems quite convinc-
ing evidence that inclusion of the burnt temperature gradient is
less essential than intuition might say. The second important ob-
servation is that the linear x(p) model for this case gives SL results
that are up to 8% too large in early stages of combustion, and down
to 4% too small in late stages. Since many authors have applied the
linear relation only to early stages of combustion (where it is er-
roneously believed to be correct, as demonstrated above) the error
generally does not cancel.

We believe that the present results (certainly for a large part)
explain the observations of Dahoe and De Goey [4], who reported
burning velocities for stoichiometric methane–air that were larger
than literature values by 5–10%.

Another important consequence of Fig. 5 is the following. In
general, values of SL are obtained over a range of pressures and
temperatures by assuming a functional dependence SL(p, T ) with
two or more parameters (often powers of pressure and temper-
ature). When fitting the resulting differential equation to an ex-
perimental pressure trace, the changing relative error observed in
Fig. 5 will cause errors in the obtained exponents for the pressure
and temperature dependence of SL . We therefore believe that the
present results should encourage anyone, who has used the lin-
ear relation to obtain burning velocities, to reinterpret their results
using the more accurate x(p) relation (19).

4.3. Explosion constant KG in the Cubic Root Law

So far we have looked at burning velocities, and more in partic-
ular to the limiting case for small x. The other interesting limit is
x → 1. In practice this limit is often theoretical; usually the flame
touches the vessel wall before x = 1. In the presence of heat loss
the maximum rate of pressure rise occurs at an inflection point,
with x < 1.
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An explosion constant KG is defined by

KG ≡
(

dp

dt

)
max

V 1/3, (40)

which is independent of the size of the vessel. With heat losses
neglected, for the important limit of x = 1, Eq. (1) reduces to

(
dp

dt

)
x→1

= 3

Rv

(
dx

dp

)−1

x→1

(
pe

pi

)1/γu

SL, (41)

so that Eq. (40) can be written with V = 4π R3
v/3 as

KG = (36π)1/3
(

dx

dp

)−1

p=pe

(
pe

pi

)1/γu

SL . (42)

For the linear x(p) model this results in

KG,linear = (36π)1/3(pe − pi)

(
pe

pi

)1/γu

SL, (43)

see for instance Ref. [5]. Likewise, the Nagy equation (B.6) gives

KG,Nagy = (36π)1/3γb pe

[(
pe

pi

)1/γu

− 1

]
SL . (44)

For our equation (19) the maximum pressure derivative using
Eq. (21) is(

dx

dp

)
p=pe

= 1

pe − pi f (pe)
. (45)

Inserting this into Eq. (42) we arrive at

KG,2zone = (36π)1/3[pe − pi f (pe)
]( pe

pi

)1/γu

SL, (46)

where f (pe) is obtained from Eq. (20).
Recently, an alternative expression for KG was published by

Van den Bulck [34]. It is based on the two-zone model, which is
however not solved in a completely algebraic manner. The author
introduces an “apparent specific heat ratio” gb , obtained from nu-
merical computations. For KG he finds

KG,VdB = (36π)1/3 gb pe

[(
pe

pi

)1/γu

− 1

]
SL . (47)

Remarkably, this result is very similar to that based on Nagy’s ex-
pression, the only difference being the appearance of gb instead
of γb .

Again a stoichiometric methane–air mixture is used as an ex-
ample case, with parameter values as before. In Ref. [34] values of
gb are given for several fuel/air mixtures as a function of equiva-
lence ratio. For stoichiometric methane–air, gb is about 1.06. Using
these input values and the above equations, one can compute that
KG/SL (in bar) equals 168 for the linear model, 185 for the Nagy
model, 161 for the two-zone model and 159 in the Van den Bulck
model.

The linear model gives a value about 4% higher than the two-
zone model. Van den Bulck [34] also reports that the linear ap-
proximation results in too high KG , since it overestimates dp/dx
for x approaching unity. His expression gives a value very close to
our two-zone one – in view of the accuracy of the value of 1.06 for
gb read from his graph, the values can be considered equivalent.
This implies that, by “tuning” the value of gb using a (numerically
evaluated) two-zone model, quantitatively correct results are ob-
tained. However, this needs to be redone for every condition, since
the functional dependence of KG in Eq. (47) is not correct, in view
of the new two-zone based expression (46).
A remark is in place concerning the end pressure pe . In all
expressions in this work, its value should be based on the (theoret-
ical) maximum value, assuming adiabatic combustion. In practice,
heat losses will play a role towards the end of combustion, result-
ing in a lower experimental end pressure value; using it would
introduce an error in SL . For the same reason, the experimental
maximum pressure rise rate will usually occur for x < 1. Hence,
the experimental KG is often not related to the experimental end
pressure pe . As already indicated, the KG values obtained above
shall be interpreted as theoretical upper limits, which are still very
useful in safety engineering.

5. Conclusions

In obtaining laminar burning velocities from a constant volume
combustion experiment, the relation between pressure p and mass
fraction burnt x plays a crucial role. We have examined several an-
alytical forms of this relation. The linear approximation, introduced
by Lewis and Von Elbe, is still the most widespread analytical re-
lation to interpret burning velocity data.

More recently two-zone models have been increasingly applied,
although these have always been evaluated numerically. We have
shown that it is possible to obtain an analytical x(p) relation for
the two-zone model, assuming perfect gas behavior for the burnt
and unburnt mixtures, and neglecting dissociation. Remarkably, we
were able to show that the same relation can be obtained from the
early work of Lewis and Von Elbe, based on multiple zones. Exam-
ining the new expression, it appears that the linear approxima-
tion already deviates for small burnt fractions. Since the pressure
derivative dx/dp contains an extra factor γb/γu , burning velocities
are obtained that are smaller than the linear result by the same
factor. For the example case of a stoichiometric methane–air mix-
ture, this factor is about 0.9.

We have extended our analytical x(p) model to multiple zones.
The resulting expressions in addition provide the temperature pro-
file in the burnt mixture. Since this model captures most of the
physics of the problem, its results were used as a benchmark for
the other relations. Results of the two-zone model appear to be
very close to the multi-zone result. Very importantly, this shows
that inclusion of the temperature gradient of the burnt mixture
only marginally affects x(p) and thus burning velocities.

Some other classes of x(p) relations that appeared earlier in
literature have been included in the comparison. The models pub-
lished by the USA Bureau of Mines were proven to violate integral
energy conservation. The same holds for the linear approximation.
Some other x(p) relations from literature were shown to follow as
limiting cases of our new equation (19).

Differences in laminar burning velocities between the varieties
of x(p) were quantified for the example case of stoichiometric
methane–air combustion. We have demonstrated that reported de-
viations between burning velocities from bomb data and other
methods can at least partly be ascribed to the limited accuracy of
the linear approximation; for the example case, differences up to
8% were found. For this reason, we strongly suggest that SL data,
obtained from the constant volume method using the linear ap-
proximation, should be re-evaluated using the new expressions put
forward in this paper.

Finally, our new x(p) relation leads to a new expression for
the explosion constant KG in the “cubic root law”, used to predict
the maximal pressure rise upon explosion in a confined volume.
For the example case, the new result was compared to KG val-
ues based on the other models. Again, within the class of fully
algebraic models, we believe that our new expression is the most
correct.
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Appendix A. Derivation of Eq. (1)

By definition of SL we have

ρu Ab SL = −dmu

dt
, (A.1)

where Ab is the flame front surface area and ρu and mu are the
unburnt density and mass, respectively. Conservation of mass gives

−dmu

dt
= dmb

dt
= ρi V

dx

dt
, (A.2)

where V is the vessel volume. The burnt mass fraction x is
uniquely related to the pressure, so

dx

dt
= dx

dp
× dp

dt
. (A.3)

Combining the above relations results in

dp

dt
= Ab

V

ρu

ρi

(
dx

dp

)−1

SL . (A.4)

Isentropic compression of the unburnt mixture gives

ρu

ρi
=

(
p

pi

)1/γu

, (A.5)

or, alternatively,

Tu = Ti

(
p

pi

)(γu−1)/γu

. (A.6)

Surface area and volume of the flame are related to its radius
as Ab = 4πr2

f and Vb = 4
3 πr3

f , respectively. Realizing that mu =
ρi V (1 − x), and pi = ρi Ru Ti , the volume of the unburnt mixture
can be written as

V u = mu Ru Tu

p
= pi

p

Tu

Ti
(1 − x)V . (A.7)

Inserting V = 4
3 π R3

v , where Rv is the effective radius of the ves-
sel (which is not necessarily a sphere) and the above relations into
V = V u + Vb yields

r f = Rv

[
1 − (1 − x)

pi

p

Tu

Ti

]1/3

. (A.8)

The area-to-volume ratio in Eq. (A.4) now becomes

Ab

V
= 3

Rv

[
1 − (1 − x)

pi

p

Tu

Ti

]2/3

. (A.9)

Inserting Eqs. (A.5), (A.6) and (A.9) into Eq. (A.4) we finally obtain

dp

dt
= 3

Rv

(
dx

dp

)−1[
1 −

(
pi

p

)1/γu

(1 − x)

]2/3( p

pi

)1/γu

SL . (A.10)

Appendix B. Alternative derivation of Eq. (B.6)

During constant volume combustion, consider an intermediate
situation where a fraction x has burnt; the total pressure p at that
moment is uniform throughout the vessel. Thermodynamically, the
pathway to this intermediate state might be constructed by con-
sidering two subsequent processes: first, burning of the fraction x
at constant volume (which can be viewed of as a “thought exper-
iment” in which an imaginary, temporary separation wall is built
around a fraction x of the initial mixture), followed by pressure
equilibration. In the first step, pressure and temperature of the
burnt mixture rise at constant volume, whereas the unburnt mix-
ture remains at the initial temperature and initial pressure pi . In
the second step, the unburnt mixture is compressed by the ex-
panding burnt gases. Both expansion and compression are assumed
to be adiabatic (no energy exchange other than compression work
between burnt and unburnt mixture).

In the first step, the end temperature at constant volume, de-
noted as T̃b , is obtained from the heat of reaction �e and the
(isochoric) specific heats cv of the burnt and unburnt mixtures:

T̃b = T0 + 1

cvb

[
�e + cvu(Ti − T0)

]
. (B.1)

Note that T̃b does not depend on x, since both the amount of heat
released and the total heat capacity of the burnt part scale linearly
with x.

Using the same notation convention, we introduce Ṽb for the
volume after isochoric combustion. With total vessel volume V , it
is obvious that Ṽb = xV . The pressure after isochoric combustion
p̃b follows from the ideal gas law:

p̃b = nb R0 T̃b

Ṽb
= ξxn0 R0 T̃b

xV
= ξni R0 T̃b

V
. (B.2)

This pressure does not depend on x, and therefore it also equals
the end pressure pe (at the end of combustion our “imaginary
wall” is just the real wall of the vessel).

After isochoric combustion of the fraction x the imaginary wall
is removed, allowing for pressure equilibration, which continues
until the pressure is equal to p everywhere. The end volume of
burnt mixture is denoted as Vb , which depends on x. For the burnt
mixture we can write, using Poisson’s law:

pe(xV )γb = pV γb
b . (B.3)

For the unburnt mixture we similarly have

pi(V − xV )γu = p(V − Vb)
γu . (B.4)

Eqs. (B.3) and (B.4) are coupled equations for p and Vb for a given
x. It is straightforward to eliminate Vb(x), resulting in

pi(1 − x)γu = p
(
1 − x[pe/p]1/γb

)γu
. (B.5)

This equation is easily written explicitly in x, arriving at

x(p) = p1/γu − p1/γu
i

p1/γb
e p(1/γu−1/γb) − p1/γu

i

. (B.6)

Appendix C. Derivation of Eq. (37)

All models described in this work assume an infinitely thin
flame front. In that case, the unburnt and burnt zones are clearly
separated, which enables obtaining the mass-averaged temperature
for the burnt zone as follows. The volumes of unburnt and burnt
mixtures are

V u = 4

3
π

(
R3

v − r3
f

)
, (C.1)

Vb = 4

3
πr3

f . (C.2)

With unburnt mass mu = (1 − x)mi and burnt mass mb = xmi , and
using the ideal gas law, equality of pressures gives

(1 − x)mi(R0/Mu)Tu
4
3 π(R3

v − r3
f )

= xmi(R0/Mb)Tb
4
3 πr3

f

, (C.3)

which after rearrangement reads

Tb = Tu

( r3
f

R3
v − r3

)
Mb

Mu

(
1 − x

x

)
. (C.4)
f
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Using Eq. (A.8) the factor containing radii can be rewritten as

r3
f

R3
v − r3

f

= 1 − (1 − x) pi
p

Tu
Ti

(1 − x) pi
p

Tu
Ti

, (C.5)

insertion of which into (C.4) gives

Tb = Ti
p

pi

1

x

Mb

Mu

[
1 − (1 − x)

pi

p

Tu

Ti

]
. (C.6)

Finally, insertion of Eq. (A.6) gives the final result (37).
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